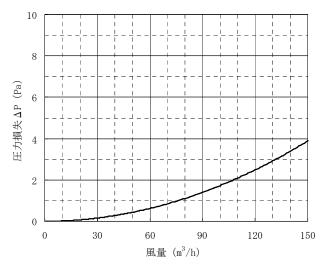
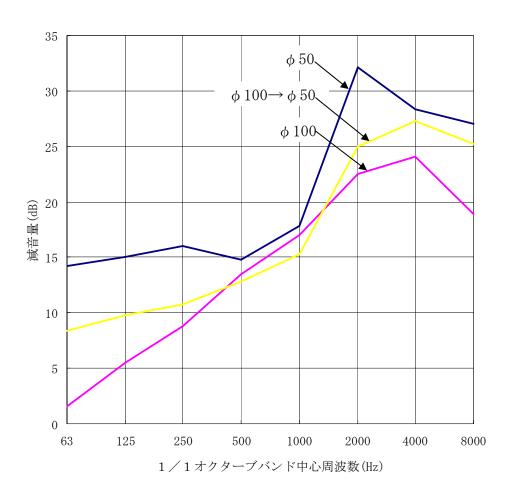

住宅サイレンサー抵抗損失曲線

住宅サイレンサーφ50→φ50の抵抗損失曲線


 $\zeta = 1.16$

住宅サイレンサー ϕ 1 0 0 $\rightarrow \phi$ 1 0 0 の抵抗損失曲線


 $\zeta = 0.52$

住宅サイレンサー φ 1 0 0 → φ 5 0 の抵抗損失曲線

 $\zeta = 0.23$

住宅サイレンサー減音量

接続ダクト	1/1オクターブバンド中心周波数(Hz)							
サイズ	63	125	250	500	1000	2000	4000	8000
φ 50	14. 2	15. 0	16. 0	14. 8	17.8	32. 2	28. 3	27. 0
φ 100	1. 6	5. 5	8.8	13. 5	17. 0	22. 5	24. 0	18. 9
$\phi 100 \rightarrow \phi 50$	8. 4	9.8	10.8	12.8	15. 3	25. 0	27. 3	25. 2

減音量の測定方法

※ 減音量の測定は日本工業規格(案)「ダクト系用減音ユニットの減音量の測定方法」に基づき行った。

IN側、OUT側のそれぞれ8箇所で音圧レベルを測定し、次式で算出した。

$$R = L_{Wi} - L_{Wo}$$
 R : 滅音量(dB)
$$L_{Wi} : 住宅サイレンサーに対する入射パワーレベル (dB)$$

$$L_{Wi} : 住宅サイレンサーに対する透過パワーレベル (dB)$$

$$L_{Wo} : 住宅サイレンサーに対する透過パワーレベル (dB)$$

$$L_{pimax} : 入口側ダクト内音圧レベルの最大値 (dB)$$

$$L_{pimin} : 入口側ダクト内音圧レベルの最小値 (dB)$$

$$L_{pomin} : 出口側ダクト内音圧レベルの最大値 (dB)$$

$$L_{pomin} : 出口側ダクト内音圧レベルの最小値 (dB)$$

$$S_{i} : 入口側 ダクト内音圧レベルの最小値 (dB)$$

$$S_{i} : \Lambda口側 \emptyset \to P$$

$$S_{o} : 出口側 \emptyset \to P$$

$$S_{o} : 出口側 \emptyset \to P$$